Positivity-preserving schemes for Euler equations: Sharp and practical CFL conditions

نویسندگان

  • Caterina Calgaro
  • Emmanuel Creusé
  • Thierry Goudon
  • Y. Penel
چکیده

When one solves PDEs modelling physical phenomena, it is of great importance to take physical constraints into account. More precisely, numerical schemes have to be designed such that discrete solutions satisfy the same constraints as exact solutions. For instance, the underlying physical assumptions for the Euler equations are the positivity of both density and pressure variables. We consider in this paper an unstructured vertex-based tesselation in R. Given a MUSCL finite volume scheme and given a reconstruction method (including a limiting process), the point is to determine whether the overall scheme ensures the positivity. The present work is issued from seminal papers from Perthame & Shu and Berthon. They proved in different frameworks that under assumptions on the corresponding one-dimensional numerical flux, a suitable CFL condition guarantees that density and pressure remain positive. We first analyse Berthon’s method by presenting the ins and outs. We then propose a more general approach adding non geometric degrees of freedom. This approach includes an optimization procedure in order to make the CFL condition explicit and as less restrictive as possible. The reconstruction method is handled independently by means of τ -limiters and of an additional damping parameter. An algorithm is provided in order to specify the adjustments to make in a preexisting code based on a certain numerical flux. Numerical simulations are carried out to prove the accuracy of the method and its ability to deal with low densities and pressures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gas-Kinetic Schemes for the Compressible Euler Equations I: Positivity-Preserving Analysis

Numerical schemes based on the collisional BGK model have been developed in recent years. In this paper, we investigate the rst-order BGK schemes for the Euler equations. Particular attention is given to nd CFL-like conditions under which the schemes are positivity-preserving (i.e. density and internal energy remain nonnegative). The rst-order BGK schemes are linear combinations of collisionles...

متن کامل

Gas-kinetic schemes for the compressible Euler equations: Positivity-preserving analysis

Numerical schemes based on the collisional BGK model have been developed in recent years. In this paper, we investigate the first-order BGK schemes for the Euler equations. Particular attention is given to finding CFL-like conditions under which the schemes are positivity-preserving (i.e. density and internal energy remain nonnegative). The first-order BGK schemes are linear combinations of col...

متن کامل

Positivity-preserving nonstandard finite difference Schemes for simulation of advection-diffusion reaction equations

Systems in which reaction terms are coupled to diffusion and advection transports arise in a wide range of chemical engineering applications, physics, biology and environmental. In these cases, the components of the unknown can denote concentrations or population sizes which represent quantities and they need to remain positive. Classical finite difference schemes may produce numerical drawback...

متن کامل

Implicit Positivity-preserving High Order

Positivity-preserving discontinuous Galerkin (DG) methods for solving hyperbolic 5 conservation laws have been extensively studied in the last several years. But nearly all the devel6 oped schemes are coupled with explicit time discretizations. Explicit discretizations suffer from the 7 constraint for the Courant-Friedrichs-Levis (CFL) number. This makes explicit methods impractical 8 for probl...

متن کامل

Positivity-Preserving High Order Finite Volume HWENO Schemes for Compressible Euler Equations

In this paper, we present a positivity-preserving high order finite volume Hermite weighted essentially non-oscillatory (HWENO) scheme for compressible Euler equations based on the framework for constructing uniformly high order accurate positivity-preserving discontinuous Galerkin and finite volume schemes for Euler equations proposed in [20]. The major advantages of the HWENO schemes is their...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comput. Physics

دوره 234  شماره 

صفحات  -

تاریخ انتشار 2013